023-62786681

首页 >> 培优资讯 >>牛娃养成 >> [学习方法] 学习指导:小学列方程解应用题的技巧
详细内容

[学习方法] 学习指导:小学列方程解应用题的技巧

时间:2019-07-21     作者:博世达教育

记忆力训练


  小学用方程解应用题是一个重要的考察点,也算是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,所以我们在平时的练习中就要注意了。在此,我们的老师给同学们介绍一些解题技巧,或许会收获不小哦!

  一、首先是审题,确定未知数

  审题,理解题意。就是全面分析已知数与未知数、已知数与未知数的关系。特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。即用x表示所求的数量或有关的未知量。在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。

  二、寻找等量关系,列出方程是关键

  “含有未知数的等式称为方程”,因而 “等式”是列方程必不可少的条件。所以寻找等量关系是解题的关键。如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。上题中的方程可以列为:“2x+47=495”

  三、解方程,求出未知数得值

  解方程时应当注意把等号对齐。如:2x+47=495

  2x+47-47=495-47     ←应将“2x”看做一个整体。

  2x=448    2x÷2=448÷2     x=224

  四、检验也是列方程解应用题中必不可少的

  检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.

  1)将求得的方程的解代入原方程中检验。如果左右两边相等,说明方程解正确了。如上题的检验过程为:

  检验:把x=224代入原方程。
  左边=2×224+47               右边=495
  =495
  因为左边=右边,所以x=224是方程2x+47=495的解。

  2)文艺书本数的2倍+47=科技书的本数

  将224代入以上等式,等式成立。故所求得的未知数的值符合题意。

  总之,以上几点技巧都是列方程解应用题的关键环节的技巧,只要大家利用这些技巧加强练习,就一定能闯过列方程解应用题这道关。在千变万化的应用问题中,我们若能抓住以上几点,以不变应万变,则问题就可迎刃而解

       常见错题解析:

  一、把算术解法当作方程解法的错误

  例1:两袋大米,甲袋重65千克,乙袋重45千克,要使两袋大米的重量相等,应从甲袋里取出多少千克放入乙袋?(用方程解)
  错解:设应从甲袋里取出大米x千克放入乙袋,根据题意列方程:x=(65-45)÷2, x=20÷2,x=10。
  分析:以上计算并无错误,但不符合利用方程求解的意义和要求。这种解法虽然也含有未知数,但实际上是一种算术方法。纠正的方法是把未知数设为x,暂时把未知条件当成已知条件,使未知条件与已知条件处于同等的地位,然后找出等量关系列方程。这样做比起用算术方法解容易得多。
  正确解法:设从甲袋取出x千克大米放入乙袋,根据题意列方程:65-x=45+x,65-2x=45,2x=65-45,x=10 答:应从甲袋取出大米10千克。
  点评:本题主要考查同学们对简易方程基本知识的掌握程度,以及运用“等量”关系列方程和解方程的基本技能。有的同学由于受算术方法解应用题的思维定势的影响,所以会出现上面的错误解法。

  二、等量关系的错误

  例2:学校分苹果,五年级老师分50千克,比四年级老师分的2倍少2千克。四年级老师分多少千克?
  错解:设四年级老师分x千克,列方程得:2x+2=50,2x=48,x=24。
  分析:本题在列方程时把等量关系弄错了,误认为四年级老师的2倍加上2千克就等于五年级老师分的。
  正确解法:设四年级老师分x千克。2x-2=50,2x=52,x=26。答:四年级老师分26千克。

  三、单位不统一的错误

  例3:梯形的面积是24平方厘米,高为4厘米,下底比上底多0.6分米,求梯形的上底。(用方程解,注:梯形面积=(上底+下底)×高÷2)
  错解1:设梯形的上底是x分米  (x+x+0.6)×4÷2=24,2x+0.6=12,2x=11.4,x=5.7。答:梯形的上底是5.7分米。
  错解2:设梯形的上底是x厘米,(x+x+0.6)×4÷2=24,2x+0.6=12,2x=11.4, x=5.7。答:梯形的上底是5.7厘米。
  分析:此题错在没有统一题中各个量的单位。题中告诉的面积单位为平方厘米,高是厘米,下底却是分米,如果不加以统一,所列出的就不是等式,也就不能恒等变形。所以我们在列方程时首先要将题中的单位统一起来。
  正确解法:0.6分米=6厘米。设梯形的上底是x厘米 (x+x+6)×4÷2=24,2 x+6=12,2 x=6,x=3。答:梯形的上底是3厘米。

  四、设句不写单位名称的错误

  例4:粮仓要运进250吨粮食,已经运了8天,每天运进18吨,余下的要4天运完。平均每天要运进多少吨?
  错解:设平均每天要运进x,根据题意列方程:18×8+4 x=250,144+4 x=250,
  4 x=250-144,4 x=106,x=26.5。答:平均每天运进26.5吨。
  分析:此题错在所设未知数不带单位名称,致使其在等式中代数量意义不明确,从而导致错解。正确的应设平均每天要运进x吨,否则不能认定该等式成立。

  五、求得的值带上单位名称的错误 

  例5:某站运来3车黄瓜和6车芹菜,共重2 580千克,每车黄瓜重260千克。每车芹菜重多少千克?
  错解:设每车芹菜重x千克,列方程得:260×3+6x=2580,780+6x=2 580。6 x =2580-780,6 x=1800,x =300(千克)。答:每车芹菜重300千克。
  分析:此题错在最后求得的x值带上了单位名称,这是不符合解方程的要求的。造成这一错误有两个原因:一方面受算术方法解题的影响;另一方面是对解方程的概念不甚明了。方程是一种等式,方程两边无论是数还是量都是相等的,因此两边的单位名称可同时约去。求方程解的过程就成了数的恒等变形的过程,最后的结果是没有单位名称的,只需要在答句中把单位名称写清楚就行。

本文由博世达教育编辑,转载请注明出处!